Expression of FRA16D/WWOX and FRA3B/FHIT genes in hematopoietic malignancies.
نویسندگان
چکیده
The WW domain containing oxidoreductase (WWOX) gene was recently identified as a candidate tumor suppressor gene at a common fragile site, FRA16D. Because the fragile histidine triad (FHIT) gene, a tumor suppressor gene encompassing the most active, common fragile site FRA3B, is frequently deleted in various cancers, we evaluated the expression of WWOX and FHIT in 74 cases of primary hematopoietic neoplasias and 20 leukemia cell lines. Aberration or absence of WWOX transcripts was detected in 51% of the primary cases and 55% of cell lines, and three WWOX nucleotide variants were detected among the leukemia cell lines. FHIT expression was absent or altered in 36% of the primary cases and 15% of cell lines. The occurrence of aberrant FHIT reverse transcription-PCR products correlated significantly with the occurrence of WWOX alterations. Wild-type transcripts of both genes were expressed in normal hematopoiesis along with a small fraction of short transcripts. A DNA blot study showed that WWOX and FHIT genes were deleted in 2 of 18 cases with primary acute leukemias; both genes were not expressed in the 2 cases. Furthermore, treatment of cells with a demethylating or histone acetylating agent in culture resulted in increased expression of WWOX and FHIT mRNA in leukemia cells. Conclusions are that WWOX expression is frequently altered or absent in hematopoietic disorders, often in association with FHIT alterations, and that alterations of these fragile genes may result not only from genomic deletions but also from epigenetic modifications associated with expression of fragility.
منابع مشابه
Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species
Common chromosomal fragile sites FRA3B and FRA16D are frequent sites of DNA instability in cancer, but their contribution to cancer cell biology is not yet understood. Genes that span these sites (FHIT and WWOX, respectively) are often perturbed (either increased or decreased) in cancer cells and both are able to suppress tumour growth. While WWOX has some tumour suppressor characteristics, its...
متن کاملFragile Genes That Are Frequently Altered in Cancer: Players Not Passengers.
FHIT, located at FRA3B, is one of the most commonly deleted genes in human cancers, and loss of FHIT protein is one of the earliest events in cancer initiation. However, location of FHIT at a chromosomal fragile site, a locus prone to breakage and gap formation under even mild replication stress, has encouraged claims that FHIT loss is a passenger event in cancers. We summarize accumulated evid...
متن کاملCommon Fragile Site Tumor Suppressor Genes and Corresponding Mouse Models of Cancer
Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected ...
متن کاملMolecular characterization of FRAXB and comparative common fragile site instability in cancer cells.
The common fragile site, FRA3B, has been shown to be a site of frequent homozygous deletions in some cancers, resulting in loss of expression of the associated FHIT gene. It has been proposed that FHIT is a tumor suppressor gene that is inactivated as a result of the instability of FRA3B in tumorigenesis. More recently, deletions at other common fragile sites, FRA7G and FRA16D, have been identi...
متن کاملInhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair
Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the role...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 1 13 شماره
صفحات -
تاریخ انتشار 2003